Best Target Selection for Auto-Aiming

Nicholas Gorski
March 13, 2012

1 Introduction

We wish to find the best target for auto-aiming. “Best” is defined to be the
target that the player is most likely aiming for. Not being able to read the
player’s mind, we need to assume two things to calculate the best target: that
the player is trying to center the reticule on the target, and that the player is
aiming for the closest target. These two assumptions are not mutually exclusive
(the player may intend to shoot a target quite off-center yet closer than the
center-most enemy, or vice versa), so we combine them in a meaningful way to
select an appropriate target.

2 Outline of Method

In order to find best target, we must score each potential target by distance and
angle. For ease of calculations, we will choose the lowest scoring target.

2.1 Distance to Target

Calculating the distance to a target is trivial. Given player position P and
target position T, let the vector V be T'— P. The distance d between the target
and player is ||V]|.

In order to later meaningfully combine distance (an unlimited value) with
angle (a limited value), distance needs to be limited as well. This is easy to
do by introducing a maximum considered distance, D ;... Targets beyond this
distance should be considered too far away to aim at; we calculate D = ﬁ,
and cull values above one. We call this the distance score. See Figure 2.1 for a
visual reference.

2.2 Angle to Target

To calculate the angle to a target, we use the dot product. Recall the dot
product between vectors @ and -

@i T = iy, + @iy, + @0, = cos 0 ||| |7

Figure 2.1: Influence of distance score, with Dps4, set to 10. The closer the
target, the lesser the value. Targets with a score greater than one are ignored
(represented by sparse light contours).

where 6 is the angle between the vectors. Let ¢ be the direction the player
is heading (which has unit length), and let ¢ be the vector V' defined above. In
order to remove any bias of distance from the angle measure, the result of the
dot product is divided by the distance to the target (making it normalized). The
result of this calculation is a number in the range [—1, 1], where —1 corresponds
to the angle directly behind the player, while 1 corresponds to the angle directly
in front of the player.

Note that the result of the dot product, being a function of cosine, is not
linear. (That is, a ship 45°off-center will have a score of = 0.707 instead of 0.5.)
In order to recover a linear map, we take the arc-cosine of the normalized dot
product to get the angle, which is linear:

PDirection 4

—

v

0 = arccos

This measurement provides another method to cull targets out of consid-
eration. Given a maximum angle 0., any targets with 6 > 037, can be
considered out of the player’s auto-aiming field of view (this prevents the sys-
tem from aiming for a target directly behind the player). We can map values

|

Figure 2.2: Influence of angle score, with 6., set to 45°. The less angular the
target, the lesser the value. Targets with a score greater than one are ignored.

within the field of view into the range [0, 1] via the calculation:

9 arccos —ﬁD"lTCﬁ""V

il

A

- eMaa: 9Maa:

Targets with A > 1 have an angle greater than 6,,,, and should be culled.
We call this the angle score. See Figure 2.2 for a visual reference.
2.3 Combination of Measurements

We combine measurements into a final score by a weighted multiplication be-
tween the distance score and angle score:

S=(1-w)D+wA

Where w is the weight.! Alternatively, we can take the maximum value
between D and A:

S =sup(D, A)

See Figure 2.3 for a visual reference.

LA weight of 0 makes the final score equal to the distance score, and 1 makes it equal to
the angle score. This should start at % and be tweaked from testing.

(© | (@)

Figure 2.3: Four differently computed final scores, using the example distance
and angle scores above. (a) has a weight of 1, (b) is the maximum between
distance score and angle score, (¢) has a weight of %, and (d) has a weight of %.

2.4 Aiming

Once a target is selected, we can use the final score to introduce artificial in-
accuracy. Note that D and A are between 0 and 1, so S will also be between
0 and 1. This maps directly into an inaccuracy score, where a perfectly placed
target has an inaccuracy score of zero, and a target at the edge of detection has
an inaccuracy score of one.

Let R be a random number between 0 and 1; if S > R then purposefully
miss. (Aiming for a target is not covered here.)

3 Pseudo-Code

The pseudo-code for the procedure is given below:

function score_target (shooter, target)
V = target.position - shooter.position
VLength = V.length

D = VLength / maxDistance

if (D > 1) then
// skip target, out of range
continue

end

angle = acos(dot(V, shooter.direction) / VLength)
A = angle / maxAngle
if (A > 1) then
// skip target, out of field of view
continue
end

S = (1 - weight) * D + weight * A
// alternatively: S = max(D, A)

return S
end

function select_target ()
lowestScore = 1
bestTarget = null

for each target in targets
S = score_target (player, target)

if (S <= lowestScore) then
lowestScore = S
bestTarget = target
end
end

return bestTarget, lowestScore
end

function fire_at_target ()
target, inaccuracy = select_target ()

if (target != null) then
// predicting where to aim is not covered here
targetPoint = aim_at_target(target, inaccuracy)

shoot_in_direction(targetPoint - player.position)
else
// no target, just fire straight ahead
shoot_in_direction(player.direction)
end
end

